一.垃圾回收机制
Python中的垃圾回收是以引用计数为主,分代收集为辅。引用计数的缺陷是循环引用的问题。
在Python中,如果一个对象的引用数为0,Python虚拟机就会回收这个对象的内存。#encoding=utf-8__author__ = 'kevinlu1010@qq.com'class ClassA(): def __init__(self): print 'object born,id:%s'%str(hex(id(self))) def __del__(self): print 'object del,id:%s'%str(hex(id(self))) def f1(): while True: c1=ClassA() del c1
执行f1()会循环输出这样的结果,而且进程占用的内存基本不会变动
object born,id:0x237cf58 object del,id:0x237cf58
c1=ClassA()
会创建一个对象,放在0x237cf58
内存中,c1变量指向这个内存,这时候这个内存的引用计数是1
del c1
后,c1变量不再指向0x237cf58
内存,所以这块内存的引用计数减一,等于0,所以就销毁了这个对象,然后释放内存。 - 导致引用计数+1的情况
- 对象被创建,例如
a=23
- 对象被引用,例如
b=a
- 对象被作为参数,传入到一个函数中,例如
func(a)
- 对象作为一个元素,存储在容器中,例如
list1=[a,a]
- 对象被创建,例如
- 导致引用计数-1的情况
- 对象的别名被显式销毁,例如
del a
- 对象的别名被赋予新的对象,例如
a=24
- 一个对象离开它的作用域,例如f函数执行完毕时,func函数中的局部变量(全局变量不会)
- 对象所在的容器被销毁,或从容器中删除对象
demo
def func(c,d): print 'in func function', sys.getrefcount(c) - 1 print 'init', sys.getrefcount(11) - 1 a = 11 print 'after a=11', sys.getrefcount(11) - 1 b = a print 'after b=1', sys.getrefcount(11) - 1 func(11) print 'after func(a)', sys.getrefcount(11) - 1 list1 = [a, 12, 14] print 'after list1=[a,12,14]', sys.getrefcount(11) - 1 a=12 print 'after a=12', sys.getrefcount(11) - 1 del a print 'after del a', sys.getrefcount(11) - 1 del b print 'after del b', sys.getrefcount(11) - 1 # list1.pop(0) # print 'after pop list1',sys.getrefcount(11)-1 del list1 print 'after del list1', sys.getrefcount(11) - 1
输出:
init 24 after a=11 25 after b=1 26 in func function 28 after func(a) 26 after list1=[a,12,14] 27 after a=12 26 after del a 26 after del b 25 after del list1 24
问题:为什么调用函数会令引用计数+2
- 对象的别名被显式销毁,例如
-
查看一个对象的引用计数
sys.getrefcount(a)
可以查看a对象的引用计数,但是比正常计数大1,因为调用函数的时候传入a,这会让a的引用计数+1
二.循环引用导致内存泄露
def f2(): while True: c1=ClassA() c2=ClassA() c1.t=c2 c2.t=c1 del c1 del c2
执行f2(),进程占用的内存会不断增大。
object born,id:0x237cf30 object born,id:0x237cf58
创建了c1,c2后,0x237cf30
(c1对应的内存,记为内存1),0x237cf58
(c2对应的内存,记为内存2)这两块内存的引用计数都是1,执行c1.t=c2
和c2.t=c1
后,这两块内存的引用计数变成2.
三.垃圾回收
deff3(): # print gc.collect() c1=ClassA() c2=ClassA() c1.t=c2 c2.t=c1 del c1 del c2 print gc.garbage print gc.collect() #显式执行垃圾回收 print gc.garbage time.sleep(10) if __name__ == '__main__': gc.set_debug(gc.DEBUG_LEAK) #设置gc模块的日志 f3()
输出:
gc: uncollectablegc: uncollectable gc: uncollectable gc: uncollectable object born,id:0x230e918 object born,id:0x230e940 4
- 垃圾回收后的对象会放在gc.garbage列表里面
gc.collect()
会返回不可达的对象数目,4等于两个对象以及它们对应的dict- 有三种情况会触发垃圾回收:1.调用
gc.collect()
,2.当gc模块的计数器达到阀值的时候。3.程序退出的时候
四.gc模块常用功能解析
gc模块提供一个接口给开发者设置垃圾回收的选项。上面说到,采用引用计数的方法管理内存的一个缺陷是循环引用,而gc模块的一个主要功能就是解决循环引用的问题。常用函数:
- gc.set_debug(flags)设置gc的debug日志,一般设置为gc.DEBUG_LEAK
- gc.collect([generation])显式进行垃圾回收,可以输入参数,0代表只检查第一代的对象,1代表检查一,二代的对象,2代表检查一,二,三代的对象,如果不传参数,执行一个full collection,也就是等于传2。返回不可达(unreachable objects)对象的数目
- gc.set_threshold(threshold0[, threshold1[, threshold2])设置自动执行垃圾回收的频率。
- gc.get_count()获取当前自动执行垃圾回收的计数器,返回一个长度为3的列表
gc模块的自动垃圾回收机制
必须要import gc模块,并且is_enable()=True才会启动自动垃圾回收。
这个机制的主要作用就是发现并处理不可达的垃圾对象。垃圾回收=垃圾检查+垃圾回收在Python中,采用分代收集的方法。把对象分为三代,一开始,对象在创建的时候,放在一代中,如果在一次一代的垃圾检查中,改对象存活下来,就会被放到二代中,同理在一次二代的垃圾检查中,该对象存活下来,就会被放到三代中。gc模块里面会有一个长度为3的列表的计数器,可以通过gc.get_count()
获取。
(488,3,0)
,其中488
是指距离上一次一代垃圾检查,Python分配内存的数目减去释放内存的数目,注意是内存分配,而不是引用计数的增加。例如: print gc.get_count() # (590, 8, 0)a = ClassA()print gc.get_count() # (591, 8, 0)del a print gc.get_count() # (590, 8, 0)
3
是指距离上一次二代垃圾检查,一代垃圾检查的次数,同理,0
是指距离上一次三代垃圾检查,二代垃圾检查的次数。
gc模快有一个自动垃圾回收的阀值,即通过gc.get_threshold
函数获取到的长度为3的元组,例如(700,10,10)
(700,10,10)
: - 当计数器从
(699,3,0)
增加到(700,3,0)
,gc模块就会执行gc.collect(0)
,即检查一代对象的垃圾,并重置计数器为(0,4,0)
- 当计数器从
(699,9,0)
增加到(700,9,0)
,gc模块就会执行gc.collect(1)
,即检查一、二代对象的垃圾,并重置计数器为(0,0,1)
- 当计数器从
(699,9,9)
增加到(700,9,9)
,gc模块就会执行gc.collect(2)
,即检查一、二、三代对象的垃圾,并重置计数器为(0,0,0)
其他
- 如果循环引用中,两个对象都定义了
__del__
方法,gc模块不会销毁这些不可达对象,因为gc模块不知道应该先调用哪个对象的__del__
方法,所以为了安全起见,gc模块会把对象放到gc.garbage中,但是不会销毁对象。
五.应用
-
- 项目中避免循环引用
- 引入gc模块,启动gc模块的自动清理循环引用的对象机制
- 由于分代收集,所以把需要长期使用的变量集中管理,并尽快移到二代以后,减少GC检查时的消耗
- gc模块唯一处理不了的是循环引用的类都有
__del__
方法,所以项目中要避免定义__del__
方法,如果一定要使用该方法,同时导致了循环引用,需要代码显式调用gc.garbage
里面的对象的__del__
来打破僵局